

# EMSNM-005 – Advanced Mitigation

# Contents

| 1                            | Introduction                                                                                                                                                                                                                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                            | Purpose2                                                                                                                                                                                                                                                       |
| 3                            | Background2                                                                                                                                                                                                                                                    |
| 4                            | Scope of Advanced Mitigation3                                                                                                                                                                                                                                  |
| 5                            | Using this Document3                                                                                                                                                                                                                                           |
| 6                            | Auditor Guidance – Key Principles of Advanced Mitigation4                                                                                                                                                                                                      |
| 7                            | Irrigation Target 1 – Irrigation Scheduling5                                                                                                                                                                                                                   |
| 7.1                          | Irrigation Differential System Decision Tree7                                                                                                                                                                                                                  |
| 8                            | Irrigation Target 2 - Training                                                                                                                                                                                                                                 |
| 9                            | Nutrient Management Target 1 – Fertiliser Management                                                                                                                                                                                                           |
|                              |                                                                                                                                                                                                                                                                |
| 10                           | Nutrient Management Target 2 – N Surplus Reduction                                                                                                                                                                                                             |
| 10<br>10.1                   | Nutrient Management Target 2 – N Surplus Reduction                                                                                                                                                                                                             |
| 10<br>10.1<br>11             | Nutrient Management Target 2 – N Surplus Reduction       12         Recommended Diverse Pastures Applicability Decision Tree:       14         Point Source Target 1       15                                                                                  |
| 10<br>10.1<br>11<br>12       | Nutrient Management Target 2 – N Surplus Reduction       12         Recommended Diverse Pastures Applicability Decision Tree:       14         Point Source Target 1       15         Relevant Documents       18                                              |
| 10<br>10.1<br>11<br>12<br>13 | Nutrient Management Target 2 – N Surplus Reduction       12         Recommended Diverse Pastures Applicability Decision Tree:       14         Point Source Target 1       15         Relevant Documents       18         Document Management Control       18 |



# 1 Introduction

Advanced Mitigation (AM) describes a set of on-farm practices that can be implemented by MHV Water shareholders to improve water use efficiency, reduce N surplus, and reduce risk of contamination entering point sources beyond that expected at Good Management Practice.

Defining AM has the advantage of setting new expectations to drive continuous improvement as well as reduce nitrogen losses to groundwater. Where a property is audited as meeting AM, The Matrix N load calculations can be updated to reflect the implementation of the higher standards of practice, and therefore a tool available to the scheme to achieve consented N loss reduction targets.

This document outlines the requirements of shareholders to be assessed as Advanced Mitigation to allow MHV Water to allocate the Advanced Mitigation management standard to a property using The Matrix.

## 2 Purpose

The purpose of this document is to promote continuous improvement through the implementation of Advanced Mitigation, provide Farm Environment Plan Auditors guidance to consistently identify AM practices on shareholder properties as well as satisfy condition 12(g) of resource consent CRC185857, which states:

Provide reproducible methodology on:

- (i) How the nutrient load limits are calculated, and the rationale for that nutrient load calculation applied; and
- (ii) How nutrients from all land subject to this resource consent will be accounted for

#### 3 Background

This document has been prepared in consultation with Barrhill Chertsey Irrigation Limited, Ashburton Lyndhurst Irrigation Limited, Macfarlane Rural Business, primary industry representatives and farmers to guide auditors on how to give farmers credit for beyond Good Management Practice, currently measured as an "A" audit grade in the existing auditor framework developed by Environment Canterbury.

The basis for Advanced Mitigation (AM) is the 2013 planning narrative developed as part of the nutrient limit setting process within the Hekeao/Hinds catchment for Plan Change 2 of the Land and Water Regional Plan (PC2) (Appendix 1).

Since the AM framework was developed, Environment Canterbury have released the <u>Industry-Agreed</u> <u>Good Management Practices relating to water quality</u> in 2015 and established the Canterbury FEP Audit Framework.

The representative farm system nutrient budgets prepared for PC2 planning process form the basis of The Matrix, which is a catchment nitrogen modelling tool used by Barrhill Chertsey Irrigation Limited (BCIL), MHV Water, and Ashburton Lyndhurst Irrigation Limited (ALIL) to set their consented nitrogen load limits and determine compliance against them. The Matrix has been deemed equivalent to Overseer by Environment Canterbury in 2020, having been validated for each scheme.

Therefore, the AM practices described in this document go beyond the expectations of the *Industry Agreed Good Management Practice relating to water quality* document and relate to farm systems typical in the Mid-Canterbury catchment, to address water quality issues specific to this area, with



nutrient losses from these properties reported by the mid-Canterbury schemes through The Matrix in accordance with their Environmental Management Strategies.

## 4 Scope of Advanced Mitigation

Adoption of Advanced Mitigations as described in this document are intended to apply to farms managed under the BCI, MHV Water and ALIL nutrient discharge resource consents, located between the Rakaia and Rangitata River between the foothills and the sea. Adoption of Mid-Canterbury Advanced Mitigation practices may be applicable in other catchments, with similar farm systems and groundwater water quality issues. However, care should be taken when applying the Advanced Mitigation framework outside of mid-Canterbury to ensure environmental outcomes sought in those areas are adequately addressed by the practices described in this document.

# 5 Using this Document

This document is intended to be a guidance tool for auditors to assist them in ascertaining where investments in technology and farm management techniques are sufficiently beyond those expected at GMP to be considered "Advanced Mitigation".

A property is deemed "Advanced Mitigation" when:

- A property is an "A" audit grade<sup>1</sup>; and
- All 5 additional Advanced Mitigation targets are met, where applicable<sup>2</sup>



Where a property overall grade is audited as "Advanced Mitigation", the schemes can apply the "Advanced Mitigation" management standard in The Matrix and report a lower nitrogen loss for the property in accordance with <u>EMSNM-004</u>, The Matrix.

The guidance notes are broken down into *Target, Outcome, Example Questions, Example Reasons For,* and *Typical Evidence*. Many of the practices referred to in this framework are either not easily modelled or not at all considered within Overseer, yet they have been scientifically proven to either improve resource use efficiency or reduce nitrogen losses to water. Therefore, in order to encourage continuous improvement of on farm nutrient management practices (which are to the ultimate advantage of the

<sup>&</sup>lt;sup>1</sup> In accordance with the Canterbury Certified Farm Environment Plan Auditor Manual, May 2020

<sup>&</sup>lt;sup>2</sup> The Advanced Mitigation targets are specified in Table CRC211511-1 of resource consent CRC211511. AM can still be achieved overall if some of the targets are not applicable on a property, for instance if there are no point sources or dryland.



community and catchment), it is important to reflect operators' investment of time and money in these technologies by way of recognition through the audit process.

Not all *Reasons For* detailed in this document are necessary, but mitigations commiserate to the risk presented by the farming activities need to be implemented for the auditor to be assured the outcomes are met for each target.

| Section in Notes    | Description                                                                           |  |
|---------------------|---------------------------------------------------------------------------------------|--|
| Target              | Target as written in CRC211511.                                                       |  |
| Outcome             | Outcomes required to demonstrate target is met.                                       |  |
| Example Questions   | Example of questions an auditor could ask to understand if outcome is met.            |  |
| Example Reasons For | Types of reasons which justify grading target as met.                                 |  |
| Typical Evidence    | Type of evidence which could be provided to an auditor to demonstrate outcome is met. |  |

## 6 Auditor Guidance – Key Principles of Advanced Mitigation

- 1. An AM target can only be assessed where the equivalent GMP target achieved a High Level of Confidence grading
- 2. AM is intended to be cost-neutral or beneficial to a typical Mid-Canterbury farm
- 3. AM target is met where underlying outcomes are demonstrated to be achieved



# 7 Irrigation Target 1 – Irrigation Scheduling

| Irrigation Target 1                                                                                                                                                                                                         | Outcome                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                             | The auditor should seek to ensure irrigation systems are designed to reduce drainage through efficient and differential application of irrigation to match crop requirements and maximise capture of rainfall.<br>A. Efficient System                                       |
| To minimise water use and drainage during times of high nitrogen loss risk, irrigation water<br>is applied so that the timing and depth targets crop requirements and optimizes capture of<br>rainfall to minimise drainage | <ul> <li>95% of irrigated area on property utilises a system which can achieve 80% efficiency<sup>3</sup>.</li> <li>B. Differential Irrigation</li> <li>Irrigation system able to vary application by irrigation management zone<sup>4</sup> on 95% of irrigated</li> </ul> |
|                                                                                                                                                                                                                             | area on the property.<br>C. Strategic Irrigation Scheduling                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                             | Optimise capture of rainfall predominantly through strategic management of irrigation, by irrigation management zone through the shoulders of the irrigation season.<br>D. Accuracy of Tools                                                                                |
|                                                                                                                                                                                                                             | Irrigation system and scheduling tools are maintained to optimise accuracy in application.                                                                                                                                                                                  |

| Example Questions                                                                                                   | Example Reasons For                                                                                         | Typical Evidence                                                    |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Efficient System                                                                                                    |                                                                                                             |                                                                     |  |
| Is 95% of the irrigated area irrigated by a system able to achieve 80% irrigation efficiency?                       | More than 95% of irrigated area irrigated by a system that can achieve 80% irrigation efficiency or better. | Irrigation system evaluation<br>Visual assessment/Farm Visit & Tour |  |
| are these risks managed to achieve 80% efficiency or vary                                                           | High application depth systems upgraded and/or managed to ensure 80% efficiency or better is achieved.      | Irrigation System Maps<br>Irrigation system efficiency calculations |  |
| Has an infrastructure improvement been considered to<br>achieve efficiency and flexibility standards? If so, was it | avoid ponding or run-off.                                                                                   |                                                                     |  |
| implemented? If not, why not and what other practices are used on farm to mitigate risk and improve water use       | land.                                                                                                       |                                                                     |  |
| efficiency to 80%?                                                                                                  |                                                                                                             |                                                                     |  |

<sup>&</sup>lt;sup>3</sup> As defined in the document *Irrigation Guidance for FEP Auditors (June 2021)* prepared by Environment Canterbury.

<sup>&</sup>lt;sup>4</sup> An Irrigation Management Zone (IMZ) is an area of land with similar irrigation requirements within one property, taking into consideration irrigation system, soil type, crop demand.



| Example Questions                                                                                                                                                                                                                                                                                                                                                                              | Example Reasons For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Typical Evidence                                                                                                                                                                                                                                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What steps are taken to avoid irrigation of non-productive land?                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Differential Application Capability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |  |  |
| How are irrigation management zones identified on your<br>property?<br>How do irrigation systems adjust application depths<br>according to irrigation management zone?<br>Where irrigation management zones vary annually, how do<br>you adjust your irrigation systems to continue to deliver the<br>appropriate amount of water by crop?                                                     | Paddock layout enables differential irrigation management.<br>Irrigation infrastructure managed to apply irrigation by<br>irrigation management zone<br>VRI used where applicable                                                                                                                                                                                                                                                                                                                                           | Irrigation systems and mitigations consistent with decision<br>tree<br>Property specific soil mapping<br>NDVI Maps, Satellite/Aerial/drone Images or equivalent<br>VRI feasibility report (where applicable)<br>VRI prescription maps (where applicable) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Strategic Irrigation Decisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                          |  |  |
| How do you schedule your irrigation? By irrigation<br>management zone currently?<br>How do you monitor crop water demand by irrigation<br>management zone?<br>When is there a high risk of drainage from rainfall on your<br>property and what steps do you take to mitigate the risk?<br>How do you use your irrigation scheduling data to inform<br>irrigation management decisions on farm? | Objective soil moisture monitoring tool is available for each<br>irrigation management zone.<br>Irrigation trigger points are adjusted according to risk<br>throughout the season and by irrigation management zone.<br>Crops receive water according to their demand.<br>Property specific weather forecasting information utilise to<br>support irrigation scheduling decisions.<br>Irrigation application rate is aligned to the 90 <sup>th</sup> percentile, 28-<br>day volume from IrriCalc for 95% of irrigated area. | Irrigation scheduling data<br>Proof of placement maps and per crop water application<br>records<br>Soil moisture monitoring data by irrigation management<br>zone.<br>IrriCalc summary report                                                            |  |  |
| Accuracy of Data                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |  |  |
| How is your irrigation scheduling tool(s) calibrated?<br>What other tools are used in conjunction with irrigation<br>scheduling data to make decisions?<br>What information do you have available to anticipate rainfall<br>and PET for your property?                                                                                                                                         | Irrigation scheduling tool(s) are calibrated regularly<br>Property specific rainfall and PET data used to support<br>decision making.                                                                                                                                                                                                                                                                                                                                                                                       | Irrigation Scheduling Tool Calibration Record<br>Rainfall and PET m<br>Property specific soil PAW maps<br>Yield Maps                                                                                                                                     |  |  |



7.1 Irrigation Differential System Decision Tree





# 8 Irrigation Target 2 - Training

| Irrigation Target 2                                                                                                                                                   | Outcome                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       | The auditor should seek to assure themselves that the irrigation manager(s) are sufficiently<br>knowledgeable in their irrigation systems and supporting tools<br>A. Training                                                                                                               |
| The irrigation manager(s) understands the relationship between the irrigation system, soil, and climate in order to achieve the irrigation management requirement (a) | <ul> <li>All irrigation manager(s) are trained to understand the property's irrigation system and its limitations</li> <li>B. Understanding</li> <li>All irrigation manager(s) can articulate reasons for steps taken to minimise risk of drainage by irrigation management zone</li> </ul> |

| Example Questions                                                                                                                                                                                                                                                                                                                                                                                                | Example Reasons For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Typical Evidence                                                                                     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Training                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      |  |  |
| How do you ensure all irrigation manager(s) can identify<br>irrigation management zones and manage their specific risks<br>to minimise drainage?                                                                                                                                                                                                                                                                 | Irrigation manager(s) can identify irrigation management<br>zones and describe how the differing risk factors are<br>managed to minimise drainage.<br>Irrigation manager(s) attend regular training on effective<br>management of the farm's irrigation system.<br>Clear communication between entire farm team involved<br>with on the day-to-day operation (e.g., owners, managers,<br>staff)                                                                                                             | Irrigation management procedures and training records<br>Irrigation training and development courses |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  | Understanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |  |  |
| Describe how your irrigation system is efficient, targeted,<br>strategic and accurate to minimise drainage and optimise<br>capture of rainfall.<br>Please explain your soil moisture trace, trigger and refill<br>points and how you use it to minimise drainage from both<br>irrigation and rainfall<br>How is rainfall and PET data utilised to refine irrigation<br>scheduling decisions to capture rainfall? | Irrigation manager(s) can clearly articulate the capability and<br>limitations of their irrigation system and reasons for actions<br>required to mitigate risk of drainage.<br>Irrigation manager(s) have ownership over the property's<br>irrigation system design and irrigation scheduling decision<br>making processes<br>Operator can demonstrate a clear understanding of the<br>relationship between their soils PAW, their irrigation systems<br>and related tools to optimise capture of rainfall. | Verbal conversation<br>Demonstrating understanding<br>Support provided from irrigation specialist    |  |  |



# 9 Nutrient Management Target 1 – Fertiliser Management

| Nutrient Target 1                                                                                                                                                                                                                                     | Outcome                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To lower soil nitrogen surplus from higher risk land use activities and to reduce<br>leaching of nitrogen, fertiliser is applied based on the variability of soils and crop<br>health throughout the season both within paddocks and between paddocks | The auditor should seek to assure themselves that N surplus is reduced by targeting fertiliser applications to address variability both between and within paddocks.<br>A. Base Soil Fertility |
|                                                                                                                                                                                                                                                       | Soils have sufficient base fertility to optimise plant yield and existing nitrogen remaining in the soil is utilised where possible.<br>B. Identification of Variability                       |
|                                                                                                                                                                                                                                                       | Property has assessed and identified sources of variability on their land.<br>C. Targeted application                                                                                          |
|                                                                                                                                                                                                                                                       | Fertiliser applications are targeted to meet the need of a plant, and account for variability both within and between paddocks D. Adaptive management                                          |
|                                                                                                                                                                                                                                                       | Plant growth and performance is monitored throughout the season, with fertiliser plans adapted in response to realised growth.                                                                 |

| Example Questions                                      | Example Reasons For                                       | Typical Evidence                         |
|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| Base Soil Fertility                                    |                                                           |                                          |
| What are your fertility goals for the property?        | All paddocks soil sampled at least once every two         | Paddock soil test results                |
| Can you step me through your nutrient management       | years or clear long-term data to provided support to a    | Mineralisable and/or Deep N test results |
| policy? (One or two paddock examples to ensure         | different regime.                                         | Herbage test results                     |
| specifics are covered in limited time available)       | Base soil fertility within optimal range for all key      | Yield maps                               |
| How do you identify potential pools of nitrogen within | macronutrients                                            | Quick N tests                            |
| your soils which could be utilised by your crop        | Fertiliser plans take into consideration crop             |                                          |
| throughout its growth season?                          | requirements, and soil fertility, including mineralizable |                                          |
| What information did you use to feed into the          | Ν.                                                        |                                          |
| fertiliser prescription of a particular crop?          | Fertility trends over time collated and identified        |                                          |
| How do you identify nutrient deficiencies in your crop | Yield mapping data used to inform fertiliser              |                                          |
| and what steps have your taken to rectify any issues?  | prescriptions for following crop.                         |                                          |



| Example Questions                                      | Example Reasons For                                      | Typical Evidence                                        |
|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
|                                                        | Soil N testing is completed for all crop paddocks.       |                                                         |
|                                                        | Soil N testing (Deep N, soil available N or              |                                                         |
|                                                        | mineralizable N soil tests) completed after all high N   |                                                         |
|                                                        | deposition crops.                                        |                                                         |
|                                                        | Herbage test completed when growth variance              |                                                         |
|                                                        | identified.                                              |                                                         |
|                                                        | Variability Identification                               |                                                         |
| How do you identify variability within and between     | Paddock variability is identified and reasons for        | Paddock scale soil fertility and/or herbage tests       |
| paddocks on your property?                             | variance understood.                                     | Satellite or drone imagery                              |
| What activities contribute to increasing or decreasing | Grid or inter paddock soil sampling completed once       | Paddock scale PAW assessment                            |
| variability of nutrients within or between paddocks on | every three years over the whole property.               | Paddock history                                         |
| your property?                                         | Property specific soils analysis completed by a suitably | Yield map                                               |
|                                                        | qualified professional to identify variability in water  | EM map                                                  |
|                                                        | holding capacity and/or soil texture.                    | Soils map                                               |
|                                                        | Yield mapping data used to identify high and low         | Identification of stock camps and low producing areas   |
|                                                        | performing areas on farm.                                | on farm.                                                |
|                                                        | Feed wedge utilised to identify paddock growth           | Understanding of stock behaviour within paddock         |
|                                                        | curves.                                                  | Feed wedge or other pasture growth management           |
|                                                        | Regular pasture walks completed to identify parts of     | tool.                                                   |
|                                                        | paddocks performing differently to the rest.             |                                                         |
|                                                        | Able to demonstrate minimal variability on the           |                                                         |
|                                                        | property.                                                |                                                         |
|                                                        | Back fencing of stock to manage nutrient transfer        |                                                         |
|                                                        | within paddock.                                          |                                                         |
| Targeted Application                                   |                                                          |                                                         |
| How is variability in fertility within and between     | Variable fertiliser routine is implemented on this       | Paddock specific fertiliser applications                |
| paddocks taken into consideration with your fertiliser | property.                                                | Crop N use requirement calculations                     |
| plan?                                                  | Fertiliser applications are less than 100 kg N/ha or     | Variable rate fertiliser prescriptions                  |
| How is fertiliser applied to the land to match plant   | justifiable if more.                                     | Variable rate applications (not an average but a per ha |
| requirements?                                          | Differential fertiliser application where known          | application etc)                                        |
| Do you have a variable nitrogen application policy?    | transfer of nutrients occurs within a paddock.           | N fertiliser benchmarking data                          |
| What systems do you have in place to manage this?      | Precision fertiliser application records support         |                                                         |
| Have you considered variable rate fertiliser?          | fertiliser planning requirements.                        |                                                         |



| Example Questions                                                                                       | Example Reasons For                                      | Typical Evidence                                    |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| How do you adjust your fertiliser applications to taken                                                 | Variable rate fertiliser is being used appropriately and |                                                     |
| into consideration stock camps and nutrient transfers plan is based on soil/herbage/paddock history and |                                                          |                                                     |
| within paddocks?                                                                                        | seasonal effects                                         |                                                     |
| Do you implement other techniques to avoid nutrient                                                     | Paddock scale soil texture and/or fertility taken into   |                                                     |
| transfer by stock within your paddock?                                                                  | consideration with for fertiliser inputs.                |                                                     |
|                                                                                                         | N fertiliser applications are avoided or minimized on    |                                                     |
|                                                                                                         | low or non-productive areas of the farm.                 |                                                     |
|                                                                                                         | N fertiliser applications are reduced on dryland         |                                                     |
|                                                                                                         | corners of paddocks.                                     |                                                     |
|                                                                                                         | Fertigation technology utilised on the property.         |                                                     |
|                                                                                                         | Adaptive Management                                      |                                                     |
| How do you monitor crop performance over a                                                              | Crop growth monitored and fertiliser regime adjusted     | Weather records – i.e., to explain extra fertiliser |
| season?                                                                                                 | to match actual progress.                                | applications due to rain in December                |
| How do you adapt your fertiliser plans to account for                                                   | Forage health and growth sensor technology               | Satellite or drone imagery                          |
| seasonal variability?                                                                                   | employed to monitor actual crop performance.             | Supply and Demand Curves and management plan        |
| How do you adjust your fertiliser prescription in                                                       | Herbage tests completed to identify deficiencies         |                                                     |
| response to adverse events that impact yields, such as                                                  | throughout the season.                                   |                                                     |
| disease, frost or hail, drought etc?                                                                    | Plans to adapt fertiliser plans when required and/or     |                                                     |
|                                                                                                         | appropriate (I.e., season growth requires less N)        |                                                     |
|                                                                                                         | Regular pasture monitoring is occurring on farm and      |                                                     |
|                                                                                                         | information is being recorded and used to make           |                                                     |
|                                                                                                         | relevant decisions for fertiliser.                       |                                                     |
|                                                                                                         | Fertiliser manager clearly able to articulate plans and  |                                                     |
|                                                                                                         | strategy with the ability to adapt depending on the      |                                                     |
|                                                                                                         | season.                                                  |                                                     |



# **10** Nutrient Management Target 2 – N Surplus Reduction

| Nutrient Target 2                                                                                                                                                                           | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To improve N fertiliser utilisation, reduce soil nitrogen surplus and lower the risk of nitrogen leaching and increase nitrogen uptake from the soil by optimising pasture and crop growth. | <ul> <li>The auditor should seek to assure themselves that all suitable tools are implemented to improve plant uptake of nitrogen and reduce N surplus from livestock grazing and intensive winter grazing.</li> <li>A. Risk Assessment</li> <li>Property has completed a risk assessment to understand and quantify N brought into and removed from the system, how it is stored in the soil and when and how it is likely to be lost to the environment.</li> <li>B. Pasture or Crop N Uptake Optimised</li> <li>Pasture and crop is managed to optimise uptake of N from the soil.</li> <li>C. Applicable N Loss Mitigations</li> </ul> |
|                                                                                                                                                                                             | Tools and techniques to minimise nitrogen surplus are implemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Example Questions                                                                                                                                                                                                                                                                                                                                   | Example Reasons For                                                                                                                                                                                                       | Typical Evidence                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Risk Assessment                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |                                                                                                             |  |
| Has a risk assessment been undertaken to identify<br>sources and timing of nitrogen loss from your farm<br>system?<br>What are the sources of N within your farm system?<br>What are identified as N sources within your farm<br>system and how are these managed? I.e clover                                                                       | N loss risks are clearly identified                                                                                                                                                                                       | Demonstrated understanding of sources and timing of<br>N loss from property.<br>N Pool graphs from Overseer |  |
| Pasture or Crop N Uptake                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                             |  |
| How do you predict future feed supply and demand –<br>is nitrogen the answer or what are methods are you<br>using to meet these surplus and deficits?<br>How does your crop rotation optimise uptake of<br>nitrogen from the soil?<br>How are you managing your pastures to reduce N<br>requirements for growth and flatten out your feed<br>curve? | Feed grown to match demand.<br>Is there a plan implement to address typical lows in<br>pasture growth, i.e., diploids with a range of heading<br>dates, tetraploid paddocks included in the rotation for<br>winter growth | Animal Demand v Feed Demand curves for your system                                                          |  |
| N Loss Mitigations                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                             |  |



| Example Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Example Reasons For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typical Evidence                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example Questions<br>How do you manage available N in your soil to your<br>advantage to produce product and minimise losses?<br>How are you reducing demand for N in the high-risk<br>seasons (Autumn)?<br>Are you using catch crops and why/why not? (Cost<br>benefit or neutral?)<br>Are you using mixed swards and why? How do you<br>maintain them?<br>Can we use low N alternatives for feed?<br>Does this fit into your system? why/why not?<br>i.e., using maize silage<br>Low N pastures (plantain?)<br>Are you reducing N in the diet else were i.e., using low<br>N supplements? | Example Reasons For<br>Actions taken which mitigate identified risks of N loss<br>from the property.<br>Dry off date brought forward to reduce autumn feed<br>demand.<br>Additional mitigations implemented when higher<br>autumn/winter stocking rates on the property.<br>Management plan to establish plantain in the pasture<br>mix.<br>Actions taken to ensure property weighted average of<br>5% plantain by content persist in pastures.<br>Low protein feed introduced from Autumn<br>Early culling to reduce feed demand in the autumn.<br>Feed pads utilised to capture nitrogen in the high-risk<br>times of the year. | Typical EvidenceSeed mixDiverse pastures visual assessment.Pasture regeneration planPhysical evidence that plantain is in both new and<br>established pastures.Multiple season proof of your management plan (I.e.,<br>Culling guide, dry off management, MINDA records,<br>culling sheets)N surplus benchmarking data<br>Autumn grazing management plan |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diverse pastures available on the property.<br>Crop rotation optimises uptake of surplus N from the soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |



**10.1** Recommended Diverse Pastures Applicability Decision Tree:





#### 11 Point Source Target 1

| Point Source                                                                                                                                                                                                                                                                                                          | Outcome                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point source discharges from critical source area such as farm silage, offal pits,<br>rubbish dumps, animal holding areas, soakholes, fuel and agrichemical storage,<br>consumable waste and well head security are managed to prevent as much as<br>practicable contaminants from entering ground or surface waters. | The auditor should seek to assure themselves that point source contaminants are<br>managed to prevent discharges of contaminants into surface or ground water.<br>A. Waste Management                      |
|                                                                                                                                                                                                                                                                                                                       | <ul> <li>Waste production is minimised or managed to reduce need to dispose of offal, rubbish, or other consumable waste on-farm.</li> <li>B. Farm Silage, and Animal Holding Areas<sup>5</sup></li> </ul> |
|                                                                                                                                                                                                                                                                                                                       | <ul><li>Run-off from farm silage and animal holding areas is managed to avoid contamination to surface or groundwater.</li><li>C. Fuel and Agrichemical Storage</li></ul>                                  |
|                                                                                                                                                                                                                                                                                                                       | Fuel and Agrichemical storage complies with regulatory requirements<br>D. Soakholes                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                       | Soakholes are located and managed to minimise drainage of unclean water.<br>E. Well Head Security                                                                                                          |
|                                                                                                                                                                                                                                                                                                                       | All wells on the property are secure and complies with regulatory requirements                                                                                                                             |

| Example Questions                               | Example Reasons For                                  | Typical Evidence                                  |  |
|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--|
| Waste Management                                |                                                      |                                                   |  |
| How do you manage waste on farm and what do you | No rubbish dumps, offal holes or other on-farm waste | Farm dairy assessment or equivalent has passed.   |  |
| do to try reducing waste?                       | disposal on the property.                            | Quality assurance assessment                      |  |
| How do you manage your surplus calves to avoid  | Consumable waste is managed to avoid burning or      | Visual assessment                                 |  |
| them becoming a point source?                   | dumping on site.                                     | Farm maps                                         |  |
|                                                 | Consumable waste is recycled and/or removed from     | Waste removal invoices                            |  |
|                                                 | the property using a reputable service provider.     | Mating plans demonstrating evidence of optimising |  |
|                                                 | Dead animals are composted on-site.                  | value of all calves born on farm.                 |  |

<sup>&</sup>lt;sup>5</sup> As defined in the Canterbury Land and Water Regional Plan as: Means an area of land in which the construction of the holding area or stocking density precludes maintenance of pasture or vegetative groundcover and is used for confining livestock for more than 30 days in any 12-month period or for more than 10 consecutive 24 hour days at a time. For the avoidance of doubt, this definition includes milking platforms, feed pads, wintering pads, and farm raceways used for stock holding purposes during milking, but excludes sheep and cattle yards constructed on pasture or bare soil.



| Example Questions Example Reasons For                  |                                                         | Typical Evidence                                |  |
|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|--|
|                                                        | Dead animals are removed from the property.             | Stock recs to animals born vs sold              |  |
|                                                        | All stock on farm going into a value chain where        |                                                 |  |
|                                                        | possible.                                               |                                                 |  |
|                                                        | Waste management complies with industry                 |                                                 |  |
|                                                        | requirements.                                           |                                                 |  |
| Farm Silage and Animal Holding Areas                   |                                                         |                                                 |  |
| How are animal holding areas and silage stacks         | All animal holding areas and silage stacks are          | Visual Assessment                               |  |
| constructed to avoid discharge of contaminants into    | constructed to collect run-off and avoid discharge to   |                                                 |  |
| the ground or run-off to surface water?                | ground- or surface water.                               |                                                 |  |
|                                                        | Fuel and Agrichemical Storage                           |                                                 |  |
| How/are Agrichemicals and liquid fertilizer and fuel   | Fuel and agrichemical storage facilities, including for | Farm dairy assessment or equivalent has passed. |  |
| stored on property? Is it possible for contaminants to | liquid fertiliser, comply with regulatory requirements  | Quality assurance assessment                    |  |
| come from the storage of these things?                 | Emergency management plan in place in case of spill.    | Chemical handling certificate                   |  |
| Do you have an emergency management plan in case       | Fuel and chemical storage areas are located more        | Visual assessment                               |  |
| of major contaminant event?                            | than 50 m from a watercourse                            | Emergency management plan                       |  |
|                                                        | Fuel and chemical storage areas are sealed to avoid     |                                                 |  |
|                                                        | contamination to groundwater                            |                                                 |  |
|                                                        | Soakholes                                               |                                                 |  |
| Do you have any soakholes?                             | No soakholes located on the property                    | Visual assessment                               |  |
| Where do they drain and how do you mitigate            | Soakholes only drain clean stormwater from buildings.   | Farm map                                        |  |
| contaminants getting into them?                        | Water from races, paddocks or other high-risk areas     | Planting plan                                   |  |
| What do you do with problem areas that regularly or    | of contamination is treated prior to drainage into a    |                                                 |  |
| permanently collect water?                             | soakhole.                                               |                                                 |  |
|                                                        | Wet land surrounding soakholes is fenced off to         |                                                 |  |
|                                                        | prevent stock access.                                   |                                                 |  |
|                                                        | Vegetation planted in areas which collect run-off from  |                                                 |  |
|                                                        | tracks and paddocks.                                    |                                                 |  |
|                                                        | Farm tracks and hard stand areas are constructed to     |                                                 |  |
|                                                        | avoid artificial ponding of stormwater.                 |                                                 |  |
| Wellhead Security                                      |                                                         |                                                 |  |
| Do you have bores/wells on farm – how are they         | All bores on the property comply with regulatory        | Well head assessment                            |  |
| protected from contaminants?                           | requirements.                                           | Compliance Monitoring Report                    |  |
| What actions have you undertaken to cap unused         | All bores located on the property are registered with   | Visual Assessment                               |  |
| bores on the property?                                 | ECan                                                    |                                                 |  |
|                                                        | All unused bores are capped                             |                                                 |  |



| Example Questions | Example Reasons For                                    | Typical Evidence |
|-------------------|--------------------------------------------------------|------------------|
|                   | All bores in use have a robust collar, surrounded by a |                  |
|                   | concrete pad and located to avoid contamination        |                  |
|                   | from entering the well.                                |                  |



# 12 Relevant Documents

# DocumentResource Consent CRC185857Resource consent CRC211511MHV Water Environmental Management StrategyEMSNM - 004 The MatrixEMSFEP - 002 Audit ProcessIndustry-agreed Good Management Practices relating to water qualityEverest, M. Hinds Catchment Nutrient and On-Farm Economic Modelling, Technical Report No R13/109(2013)

Irrigation Guidance for FEP Auditors (June 2021) prepared by Environment Canterbury

Canterbury Certified Farm Environment Plan Auditor Manual May 2020

## 13 Document Management Control

| Version | Date Reviewed | Purpose / Amendments | Section Reviewed | Reviewer   | Status   |
|---------|---------------|----------------------|------------------|------------|----------|
| 1.0     | May 2022      | Development of EMSNM | All              | Eva Harris | FINAL    |
|         |               | - 005                |                  |            | DRAFT    |
| 1.0     | May 2022      |                      | All              | Mel Brooks | Approved |
|         |               |                      |                  |            |          |
|         |               |                      |                  |            |          |
|         |               |                      |                  |            |          |
|         |               |                      |                  |            |          |
|         |               |                      |                  |            |          |
|         |               |                      |                  |            |          |



# Appendix 1: Advanced Mitigation Origins

Advanced Mitigation (AM) 1, 2 and 3 was developed by Mark Everest on behalf of Environment Canterbury to understand the economic impact of implementation of different practices to achieve different water quality outcomes in the Plan Change 2 (PC2) area<sup>6</sup>. Advanced Mitigation 1 was the scenario where the implemented practices were beyond Good Practice, but still remained cost-neutral or beneficial to a typical farm in the Hekeao/Hinds catchment. The nutrient losses from these scenarios were calculated using representative Overseer nutrient budgets and fed into groundwater models to establish the necessary N reduction targets in the PC2 area. The final outcome of PC2 anticipated adoption of Advanced Mitigation 1 practices to achieve 2030 N reductions targets and Advanced Mitigation 2 for all dairy farms to achieve the 2035 water quality targets.

The practices described as AM1 as part of the solutions package include:

- Installation of soil moisture monitoring gear and VRI on existing centre pivots.
- No May urea applications.
- Adjust cropping fertiliser rates and types to best suit plant requirements and timings.
- Use of yield maps to define an assumed 10% of the paddock which only yields half of the paddock average
- Use variable rate fertiliser technology
- Limit each urea application to 140 kg N/ha
- Variable Rate Fertiliser
- Gibberellic Acid to substitute some Spring and Autumn Nitrogen on Pastures
- Nitrification Inhibitor use combined with nitrogen based fertiliser reductions to match.
- Mixed Pasture Sward.
- Short Rotation Ryegrass and White Clover Pasture.
- Modify existing centre pivot irrigators to Variable Rate Irrigation technology on 90% of area
- Optimise stocking rates.

The AM1 nutrient budgets used for the PC2 limit-setting process have been used in The Matrix and formed part of the equivalence approval. Changes to these nutrient budgets for The Matrix will first need approval from ECan.

Key points to note about the history of AM1:

- Based on *typical* farm systems located in the Hekeao/Hinds catchment
- AM practices target key water quality issues identified in the Hekeao/Hinds sub-regional process
- AM intended to be cost-neutral or beneficial to *a typical farm* in the Hekeao/Hinds catchment
- AM nutrient budgets form part of the Matrix equivalence approval
- All schemes used the AM narrative above in the consent process

AM may change and evolve over time, but at the date of this report, the practices that described within this summary are represented by the Advanced Mitigation Overseer Nutrient Budget files used in The Matrix.

<sup>&</sup>lt;sup>6</sup> Everest, M. *Hinds Catchment Nutrient and On-Farm Economic Modelling*, Technical Report No R13/109 <u>https://api.ecan.govt.nz/TrimPublicAPI/documents/download/1991180</u> (2013)